top of page

Root Finding Techniques | Secant Method

Manisha Sahu
In this article, we will be going to study the Secant method in numerical analysis and design using Python.
 

Algorithm


  • Read a,b,E

  • Compute f(a) and f(b)

  • for i=1 to n in steps of 1 do

  • m=af(b)-bf(a)/f(b)-f(a)

  • if(|f(m)|<E) then

  • a=b and b=m

  • endif

  • else

  • Write does not converge a,b,f(a),f(b)

  • endfor

  • Write convergent solution m,f(m)

  • stop

 

Flowchart


 

Program


import math
def f(x): 
    return x*x*x - x -1
   

def secant(a,b): 
  
    if (f(a) * f(b) <0.0):
        while True:
            m=(a*f(b)-b*f(a))/(f(b)-f(a))
            a=b
            b=m

            if (abs(f(m)) < 0.0001):
                break 
        print("Root",round(m,4))
    else:
        print("Cannot find roots")

a =1.0
b = 2.0
secant(a, b) 
  
 

Example


Q]Find the real root of the equation x^3-x-1=0 by secant method up to 4 decimal places?


Solution-

F(x)=x^3-x-1
To find x0 and x1 
F(0)=-1 , F(1)=-1 , F(2)= 5
 
Root[1,2]
F(1.5)=0.875 , F(1.4)=0.343 , F(1.3)= -0.103
 
Changing x0= 1.3 and x1= 1.4
 F(x0)= -0.103 and F(x1)= 1.323042
 
(First case) x2=x0*F(x1)-x1*F(x0) =1.323042
 F(x1)-F(x0)
  F(x2)= -0.007136
 
(Second case)  x3=x1*F(x2)-x2*F(x1) =1.323605
 F(x2)-F(x1)
 F(x2)= -0.000481
 
(Third case) x4=x2*F(x3)-x3*F(x2) =1.324717
 F(x3)-F(x2)
 F(x2)= -0.000004
Hence the correct answer(root) up to 4 decimal places is x=1.3247

 

Happy Coding!

Follow us on Instagram @programmersdoor

Join us on Telegram @programmersdoor


Please write comments if you find any bug in the above code, or want some updates.

Follow Programmers Door for more.

61 views0 comments

Recent Posts

See All

Comments


bottom of page