top of page
Manisha Sahu

Root Finding Techniques | Fixed Point Iteration Method

In this article, we will be going to study the fixed point iteration method in numerical analysis and design using Python.
 

Algorithm


  • start

  • Read x,,epsilon(absolute error),x_before=0,i

  • Calculate f(x) and g(x) //f(x)=putting x in the fxn,g(x)=differentiation of f(x)

  • while (|x-x_before|>epsilon)

  • x_before=x

  • x=g(x)

  • print (i, "{0:.6f}".format(x), "{0:.6f}".format(abs(x - x_before)))

  • i=i+1

  • end loop

 

Flowchart



 

Program



def f(x):
    return (x**3 - 9*x + 1 )


def g(x):
    return (9*x-1)**(1/3)

epsilon = 0.0001


x = 2.7

x_before = 0

i = 0

while (abs(x - x_before) > epsilon):
    x_before = x
    x = g(x)

    print(i, "{0:.6f}".format(x), "{0:.6f}".format(abs(x - x_before)))
    i = i + 1
 

Example


Q]Q] Find the real root of equation x^3-9x+1=0 by fixed-point iteration method?


Solution-


f(0)=1 , f(1)=-7 , f(2)=-9 , f(3)=1
Since root of f(x)=0 lies between 2 and 3 so taking x0=2.7
 
Assumption-
x= (9x-1)^1/3
F(x)= (9x-1)^1/3
F’(x)=3/(9x-1)^2/3
Since F’(2.7) coming less than 1,satisfy the condition . So taking
x(n+1)=(9x(n)-1)^1/3
n=0 
x1=(9x0-1)^1/3=2.8562
x2=(9x1-1)^1/3=2.9125 -------------------------------------------
----------------------------------------
x7=2.9427
X8=2.9428
We get two approximate values having same decimal digits up to three places ,so the answer is 2.942
 
 

Happy Coding!

Follow us on Instagram @programmersdoor

Join us on Telegram @programmersdoor


Please write comments if you find any bug in the above code, or want some updates.

Follow Programmers Door for more.







20 views0 comments

Recent Posts

See All

Comentarios


bottom of page